Three-Dimensional Simulations of Core-Collapse Supernova Explosions
The Core-collapse supernova problem is a long-standing multi-physics conundrum in radiation/hydrodynamics that has resisted solution for more than 50 years. We are now in a position to simulate in three dimensions the detailed collapse and explosive evolution of the cores of the progenitor massive stars.
Using the sophisticated code Fornax, developed expressly to address supernova theory, we have recently simulated (using NERSC, Blue Waters, Stampede2) more than ten 3D neutrino-radiation/hydrodynamics models (and this is a fraction of our planned model suite, soon to be joined by INCITE/Theta runs), most of which explode naturally with default physics. This is the largest and most comprehensive 3D study ever performed in supernova theory.
Together with our exploration of the supernova mechanism, we are calculating the recoil kicks, the gravitational wave signals, the debris morphologies, the neutrino signatures, and the nucleosynthesis associated with these 3D models of explosion.
Recent papers: arXiv:1801.01914, arXiv:1801.08148, arXiv:1804.00689, arXiv:1806.07390, arXiv:1809.05106, arXiv:1812.07703
Prof. Adam Burrows, Princeton, SciDAC4-TEAMS collaboration