# Highlights

If you would like to add your own highlights to this page, please read the instructions.

## CompFUSE

- Enabling Portability and GPU Direct on DCA++
- A coherent theoretical description of Kitaev-candidate material α-RuCl3
- AI accelerates lattice quantum Monte Carlo simulations
- Density Matrix Renormalization Group Method Enables Computing High-Resolution Magnetic Excitation Spectra
- Advancing Materials Simulations on Summit via RAPIDS
- Emerging hole band spurs unconventional superconductivity

## NUCLEI

- Variational Monte Carlo calculations with artificial neural-network correlators
- Supernovae Ignited by Nuclear Fission
- Benchmarking Optimization & Supervised Machine Learning Methods
- Machine Learning-Based Inversion of Nuclear Responses
- Spin Susceptibility in Neutron Matter from QMC Calculations
- Computing nuclei at lightning speed
- Accurate bulk properties of nuclei and nuclear matter from potentials with Δ isobars
- Multimessenger constraints on the neutron-star equation of state and the Hubble constant
- Excitation energies from effective field theory with quantified uncertainties
- Theory of nuclear radii challenges the magic character of neutron number N=32
- Odd–even staggering of charge radii of exotic copper isotopes
- Many-Body Factorization & Position-Momentum Equivalence of SRC
- How well do we know the matter that is inside of neutron stars?
- Efficient emulators for scattering using eigenvector continuation
- Ab initio calculation of neutrinoless double beta decay
- Benchmark calculations of pure neutron matter with realistic nucleon-nucleon interactions
- Inclusive neutrino scattering in 12C
- Nuclear and neutron-star matter from local chiral interactions
- Discovery of mirror symmetry violation in bound nuclear ground states
- Large Sound Speed in Dense Matter and the Deformability of Neutron Stars
- (e,e’p) study of momentum distribution ratios in A=3 nuclei
- Chiral Effective Field Theory for Nuclei Structure
- Computing Beta Decay Everywhere
- Nuclear Charge Radii of Boron 10 and 11
- Neutron superfluidity and kinks in charge radii at magic numbers
- 50-year-old puzzle about beta-decay rates resolved from first principles
- Nuclear Pasta: strongest material in the universe
- Neutron Drip Line in the Ca Region from Bayesian Model Averaging
- Deep Learning for Nuclear Binding Energy and Radius
- Confronting gravitational waves with modern nuclear physics constraints
- Exploring new small system geometries in heavy ion collisions
- Cluster radioactivity of 294Og
- Scientific discovery through statistics
- Quantum Computing of an Atomic Nucleus
- Ab initio short-range-correlation scaling factors in nuclei up to A=40
- Featherweight Oxygen Explained
- Puzzling Sizes of Extreme Calcium Isotopes
- Neutron-Rich Helium Isotopes: Complex Made Simple
- Bayesian approach to model-based extrapolation of nuclear observables
- Nucleon momentum distributions for local chiral interactions
- First Direct Evidence for the Fastest Neutrino Emission Mechanism in a Neutron Star
- Connecting Neutron Skins to Gravitational Waves
- Quantum Monte Carlo calculations of nuclei with local chiral interactions
- Oganesson is an oddball among atoms and nuclei
- Computing the structure of the lightest tin isotopes
- Computation of fragments in the spontaneous fission of 240Pu
- Theory errors for nuclear calculations using Bayesian statistics
- Quantified complex-energy shell model interaction for light nuclei
- Computer studies of colliding oxygen nuclei
- Variational calculation of closed-shell nuclei up to A = 40

## RAPIDS

- Machine Learned Magnetohdrodynamic Reduced-Order Models
- Lagrangian Particle Tracing for Next Generation Architectures
- Verification of Structured Code Refactoring
- Parallel Data Aggregation for Neutrino Event Analysis
- Plasma-Material Coupling with ADIOS
- Surrogate Modeling for Spatio-Temporal Data from Earth System Models
- Accelerating Density Functional Theory Computations
- Accelerating Sparse Triangular Solves in Fusion Science Codes through One-Sided Communication
- Accelerating HEP Data Analysis on HPC Platforms
- Accelerating I/O for VPIC Simulations
- Galaxy-Scale Strong Gravitational Lens Detection
- Integrating Human Perception with Computational Power for Guided Exploratory Data Analysis
- Data Management and Visualization for Plasma Physics
- Automated Parallel Event Generation and Analysis
- Accelerating Event Reconstruction for Liquid Argon TPC Neutrino Detectors
- Enabling Global Adjoint Tomography at scale through next-generation I/O
- Graphical Model Structure Learning at Unprecedented Scale
- Global Particle-in-Cell Simulation of Fusion Plasmas
- Multivariate, Temporal Visual Analytics for Climate Model Analysis
- Accelerating Earthquake Detection
- Accelerating Weather Research Forecasting Simulations with Deep Neural Network Surrogates
- Accelerating Computational Kernels of Tokamak Simulations (with FASTMath)
- Performance Optimization for Multiscale Gyrokinetic Turbulence
- Accelerating HEP Event Generation and Analysis on HPC Systems
- Accelerating Fusion Fission Simulations
- In situ Viz Unlocks Unsteady Dynamics at Extreme Scale
- Roofline-Based Modeling in Intel Advisor
- Improving Network Throughput with Global Communication Reordering
- Improving Collective Reduction Performance On Manycore Architectures
- Deep Stack Program Optimization
- Autonomic Data Movement for Data Staging-based In-Situ Workflows
- Robust IO Performance Modeling in Leadership-Class Systems by Automated Change Detection
- In Situ Compression Artifact Removal in Scientific Data Using Deep Transfer Learning

## TEAMS

- Core-Collapse Supernova Explosion Theory (2021)
- Equation of State from Multi-Messenger Observations
- Three-Dimensional CCSN Explosion Models using Fornax (2019)
- Neutron-Star Merger Simulations (2018)
- Gravitational Waves from 3D CCSN models
- Fornax (CCSN simulation capability) code paper
- MAESTROeX Low Mach Number Solver
- Microphysics Dependence of CCSN Explosions
- Explosions of Low-Mass Massive Stars
- Gravitational Waves from Core-Collapse Supernovae
- Exploding 3D CCSN Model
- 3D Fornax Supernova Simulation
- 3D Kilonova Model
- 3D CCSN Correlations
- Resolution Dependence of CCSN 3D Simulations
- The Overarching Framework of Core-Collapse Supernova Explosions as Revealed by 3D Fornax simulations
- Equation of State Distribution for Simulations
- A systematic study of proto-neutron star convection in three-dimensional core-collapse supernova simulations

*Last updated: 12 June 2021*